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Abstract. Using techniques of numerical taxonomy we study ultrametricity in the planar 
graph colouring problem with three and four colours. Evidence of a non-trivial hierarchical 
organisation is given for the case q = 3. For q = 4 we find a simpler ultrametricity with 
only equilateral triangles of side length d = 0.77. This example shows that lack of frustration 
does not rule out ultrametricity completely although it appears in a rather trivial way. 

1. Introduction 

Recent developments in the mean-field theory of spin glasses have shown that the 
distribution of local minima in configuration space has several interesting properties 
(MCzard et a1 1984). Particularly relevant are the ultrametricity of the pure states and 
a non-self-averaging order parameter of the Sherrington-Kirkpatrick ( SK) model of 
spin glasses. 

New concepts and tools, originally developed in the statistical mechanics of dis- 
ordered systems can be used in the study of complex optimisation problems. 

What these problems have in common is frustration and disorder, properties which 
are known to lead to a rich structure of minima of the free energy. Kirkpatrick and 
Toulouse (1985) studied the travelling salesman problem and they found that the 
quasi-optimal solutions are organised hierarchically (see also Sourlas 1986). 

Which are the properties responsible for ultrametricity is still an open question. 
Since frustration is a common property of systems which have been found to be 
ultrametric it is interesting to study problems which differ only in the presence of 
frustration. An example of this is provided by the graph colouring problem (GCP) 

(Bouchard and Le Doussal 1986). 
The GCP with q colours consists of painting the N vertices of a graph in such a 

way that the number of links connecting vertices with the same colours is minimised. 
For q k 4 it is always possible to perform a perfect painting which means that there is 
no frustration. On the other hand for q = 3 the system is frustrated and in general the 
optimal solutions will have links connecting vertices painted with the same colours. 

If ultrametricity holds, previous experience shows that it becomes exact only when 
the size of the system becomes larger. Indeed the replica calculations for the SK model 
were done in the thermodynamic limit and also the numerical simulations show an 
improvement of ultrametricity as the size N is increased (Bhatt er a1 1984, Parga et a1 
1984, Parga 1987). 

t Fellowship granted by the Comisidn Nacional de Energla Atdmica, Argentina. 
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Since for graphs with a finite number of vertices we expect only an approximate 
ultrametricity we need ways to measure the departure from a true ultrametric organisa- 
tion of the optimal solutions. The technique we used is borrowed from biological 
taxonomy (Sokal et a1 1963) which was already proposed for physical systems by 
Parga (1987) and Rammal et a f  (1985). Given a set of optimal paintings the method 
constructs two different ultrametrics which should coincide as the graphs become large. 
The difference of these ultrametrics is measured by calculating magnitudes describing 
the structure of the associated hierarchical trees (Parga 1987). Alternatively an ultra- 
metricity degree 9 can be defined (Rammal et al 1985). 

A different taxonomic analysis of the GCP was previously performed by Bouchaud 
and Le Doussal (1986) who measured the ultrametricity degree 9. However they 
omitted the analysis in N restricting themselves to N = 25. We also think that our 
way to measure ultrametricity describes better the structure of the hierarchical trees. 
Besides, an error in that reference in the evaluation of the degree 9 for the crucial 
case q = 3 makes it desirable to have an independent analysis of the problem. We 
found 9 = 0.61 instead of the value 9 = 0.06 quoted by those authorst. 

This paper is organised as follows. In 9 2 we describe the problem and introduce 
several definitions. In § 3 we present our results for the probability distribution P (  d )  
of distances between quasi-optimal states and the ultrametricity tests. We also include 
our analysis with N and we show how ultrametricity is spoiled as worse quasi-optimal 
solutions are included. 

Finally we present also a criterion to determine when the method can be applied 
and the conclusions. 

2. Definitions 

2. I .  The model 

The cost function for a configuration S = {SI} where SI = 1 , 2 , .  . . , q is the colour of 
the ith vertex is 

F ( S ) =  c ss,,s, ( 1 )  
( L J )  

where ( i , j )  runs over all the links of the graph. 
To find the N, states of lowest F we start with a random configuration and accept 

only changes that decrease the cost function. The improvements of the configurations 
are made in an iterative form. In each step all the vertices are painted with the least-used 
colour in the neighbouring ones. We consider only planar graphs with a mean 
connectivity C --. 5 generated in such a way that no solution with F = 0 exists for q = 3. 
These planar graphs were generated according with the algorithm described by Fisher 
and Wing (1966). An analysis of this technique shows that all planar graphs have the 
same probability of appearing. For each one we found N, = 200 different solutions 
with F = 0 for q = 4 (in this case a perfect colouring is always possible). For q = 3 we 
obtained N, = 200 solutions for each graph for N = 25 (we considered five graphs), 
and N, = 50 for N = 50 and 70. We took F = Fo, where Fo is as small as possible for 
a given connectivity and number of vertices. For the last two values of N we considered 
two graphs for each one. For the best solutions we found Fo = 5,  6 for N = 25, Fo = 7, 
9 for N = 50, and Fo = 10, 12 for N = 70. 

t After checking their calculations the authors of that work agreed with our estimation of 9. 



Ultrametricity, frustration and the graph colouring problem 3025 

2.2. Ultrametricity 

A metric space is said to be ultrametric if any three points a, p, y satisfy the following 
inequality: 

(2) 
Since ultrametricity is not an exact property for finite N, the distance between two 
categories of the hierarchy is not well defined and there is no unique way to associate 
a tree with the data (Rammal et a1 1986). Two simple techniques have been designed 
to deal with cases where ultrametricity is not exact; these are the single-linkage and 
complete-linkage clustering (Sokal et a1 1963). They correspond respectively to taking 
the distance between categories as the minimum or the maximum between any member 
of one category and any member of the other. In this way two new matrix distances 
d' and d' between the N ,  elements of the set of solutions are obtained. 

To compare the two procedures we use the probability f ( w ,  d )  of having a cluster 
of weight w when the tree is cut at a scale d, and all the states have the same weight 
1/ N,. The distribution of cluster weights w I  = n ,  / N,  at scale d, where n ,  is the number 
of states in the cluster I, is 

d ( a ,  P )  4 max{d(a, r), d ( P ,  7 ) ) .  

f ( w , d ) = C S ( w , - w )  (3)  
I 

and its moments are given by 

where the bar denotes the average over the graphs. 

in particular (MCzard et al 1984) 
Notice that the M k ( d )  are the probability that the k states are in the same cluster 

M2(d)  = y ( d ) .  ( 5 )  
Another relevant quantity is the distribution of distances 

where d U P  is the distance between the quasi-optimal solutions a, p. 
In the same way we evaluate the pair distributions 

for the two ultrametrics defined previously. 
It is also usual to define the quantity 

Y ( d ) =  P ( x )  dx lod 
and 

y ( d )  =Yo. 
Notice that results only make sense when the tree is studied at a scale d where 

both distributions have a substantial overlap. 
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3. Numerical results 
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The distance between two solutions a,P is defined as the fraction of vertices with 
different colours, i.e. 

The numerical results are based upon several samples of various sizes N = 25, 50, 
5 5 ,  60, 70. 

The results for P ( d )  are exhibited in figures 1 and 2. In figure 1 we show P ( d )  
for the case q = 3, N = 25 and N,  = 14, 50. Notice that the spread in P ( d )  does not 
change much with N,. This is contrary to what happens with the SK model of spin 
glasses with equal weights (Parga 1987). This is because the number of optimal solutions 
in the GCP is always larger than the number of lowest-energy states of the SK model. 
Here, all the solutions included in P ( d )  have the same value of Fo. For different 
values of N the behaviour of P ( d )  is similar, having the same tail and peak. 

d 

Figure 1. P ( d )  for the case q = 3 and N = 25. The curves correspond to N, = 14 ( x )  and 
N, = 50 (0). 

In figure 2 we show P ( d )  for the case q = 4, N, = 14 and N = 25, 70. Although 
not shown in this figure the behaviour is similar for different values of N,. However 
it differs from the case q = 3  in that P ( d )  changes with N, becoming narrower and 
peaked at about d -0.77 as N increases. The distributions do not include the self- 
distance contributions. 

Comparing P' and P' for different values of N for the case q = 3 we checked 
that there is a range of d between 0.4-0.6 where these distributions overlap. This 
means that we can apply the taxonomic analysis for this range of values of d. 
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Figure 2. P ( d )  for the case 9 = 4 and N, = 14. The curves correspond to N = 25 ( x )  and 
N = 70 (0). 
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Figure 3. Painvise distribution for the case q = 4, and N,v = 14. For N = 25, P< (A) and 
P’ (A).  For N = 70, P< (0) and P’ (0). 
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Figure 4. The first moments of the cluster weight distribution at the scale d = 0.4 for the 
case q = 3 and N, = 14, calculated with the single- and complete-linkage procedures: for 
N = 25: single linkage (0) and complete linkage (0); N = 50: single linkage ( x )  and 
complete linkage (+); N = 70: single linkage (H) and complete linkage (U). We have 
included error bars only where they are greater than the size of the data points. 

In figure 3 we show P' and P' for N = 25, 70 with q = 4. Here these distributions 
overlap in a very narrow interval where they take very small values. 

As we already said, we calculated the cluster weight distributions f' and f' 
corresponding to the single- and complete-linkage procedures respectively. Once 
obtained we evaluated their moments Mk'(d) and Mk'(d) using (4). 

In figure 4 we show the first moments for q = 3 and N, = 14. Here N = 25, 50, 70 
for both the single- and complete-linkage techniques. The tree was cut at a scale 
d = 0.4. Notice that the difference between the two procedures tends to decrease as 
N increases. This figure is to be compared with figure 7 of Parga (1987) where the 
moments are calculated for a model ultrametric by construction and for the SK model. 
In all these cases they show a similar behaviour. Although we chose d = 0.4 analogous 
results still hold for any other value of d in the range of interest. 

As pointed out by Rammal et a1 (1985), when the number of considered solutions 
increases, ultrametricity tends to disappear. This is clear in figure 5 where we plot the 
moments for q = 3, N = 25, 50, 70 and N ,  = 50 at the same scale d = 0.4. Figures 4 
and 5 are based on the same graphs. One can see that the differences between the 
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Figure 5. Same as figure 4 with N ,  = 50. Error bars are treated as in figure 4. 

single- and complete-linkage procedures are, for the three values of N, larger than 
those of figure 4. 

Once the moments are found it is interesting to compare M :  and M :  with the 
direct calculation of y ( d )  based on P ( d ) .  Figure 6 compares y,  M :  and M :  for q = 3, 
N, = 14 for several values of N. The difference between these quantities tends to 
decrease with N. Let us notice that y approaches the single-linkage prediction as N 
increases. This is also similar to what occurs for the simple ultrametric model treated 
by Parga (1987). It is also in agreement with the fact that as ultrametricity improves 
with increasing N the single-linkage procedure yields the optimal ultrametric. 

It should be remarked that this ultrametricity test was done with the lowest state 
we could find. Choosing a set of solutions with a larger F the test would not be 
positive. Ultrametricity depends strongly on the detailed structure of the quasi-optimal 
states. Figure 7 exhibits the moments calculated with the single- and complete-linkage 
techniques for sets of solutions which are slightly less optimal than the best ones we 
have. Here N = 55,70 with N, = 14 at the scale d = 0.5. We took solutions with F,, = 8, 
9 for N=55 (the best solutions we found have Fo=7) and Fo= 11,14 for N =70. 
Comparing with figure 4 we see that the data of figure 7 have a behaviour with N 
which is opposite to that followed by an ultrametric set. 

We now discuss the connection between ultrametricity and frustration. In order 
to clarify this point the results for q = 3 should be compared with those for q = 4. 
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Figure 6. Comparison of M;,  M; and y ( d )  at the scale d =0.4 as a function of N for 
the case q = 3, N ,  = 14. M; (x) ,  M; ( + I ,  y ( d )  (0). Error bars are treated as in figure 4. 

k 

Figure 7. The moments M , ( d )  for q = 3 at a scale d = 0.5 calculated with the single- and 
complete-linkage procedures, using slightly less optimal solutions. For N = 5 5 :  single 
linkage ( x )  and complete linkage (+); N = 7 0  single linkage (0) and complete linkage 
(0). Error bars are treated as in figure 4. 
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Figure 8. The moments M , ( d )  at a scale d = 0.7 for the case q = 4 and N, = 14. For N = 25: 
single linkage (0) and complete linkage (0); N = 50: single linkage ( x )  and complete 
linkage (+); N = 70: single linkage (m) and complete linkage (U). Error bars are treated 
as in figure 4. 

Comparing the distributions in figure 3, we see that the overlap between all of them 
is negligible. Indeed there is no range of d where the method can be applied for the 
case q = 4. An example of a wrong application is shown in figure 8, where we plot 
the moments M: and M;.  The tree was cut at a scale d =0.7 and contrary to what 
happened in figure 4 the difference between the two procedures tends to increase with 
N indicating lack of ultrametricity. Nevertheless studying the behaviour of P' and 
P' with N (figure 3) ,  we see that they become closer as N is increased. This means 
that for the case q = 4 a more simple hierarchical structure exists, one in which all the 
states are at the same distance between them. 

To conclude, we have analysed the relevance of frustration for the ultrametricity 
of the set of quasi-optimal solutions of the GCP. For the frustrated case there are clear 
signs of the existence of ultrametricity with both equilateral and isosceles triangles 
present. For the unfrustrated case ultrametricity is still a property of the system but 
now there are only equilateral triangles. 

This behaviour can be understood; for the unfrustrated case it is very easy to obtain 
zero energy solutions and these are not correlated. They are essentially random 
four-colour configurations. An average overlap of 0.25 is then expected in agreement 
with the value d -0.77 found in figure 2. This argument can also be used for more 
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than four colours; in this case the peak of the distance distribution appears at d = 
1 - l /q .  We have checked this explicitly for q = 5 and we found d = 0.8 as expected. 
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